

- The maritime sector consumes <u>300 mio. ton fuel oil/year</u>, and emits 3% of global CO₂ emissions.
- Maersk's 700+ container ships consume 10 mio. ton fuel oil/year and emit 0.1% of global CO₂ emissions

'Facts' to remember regarding the shipping sector and decarbonisation

- Shipping is (normally) a <u>low-margin business</u> → challenge to suddenly pay 2-3 times the fuel cost
- Fossil fuel purchase is based on <u>SPOT markets</u> →
 now we need to engage in long term offtake agreements
- <u>Used to run on the 'residual oils'</u> of poor quality →
 This is an opportunity for us when we need to find green fuels

We depend on customers to value and pay for carbonneutral transport and we believe they (continue to) do so

[+5%]

Source calculations by Maersk

We need more than new fuels

The Maritime Tunnel Vision Ship building Supply-chain Maintenance Recycling Spare parts **Fuels Energy efficiency** Circularity Retrofit

Maritime net-zero

Potentiel technologies & drop-in fuel options

Technology	Learnings sofar	Doable?
Battery	Viable for short-sea shipping, but not deep sea shipping	No
Hydrogen	Perhaps viable (ICE/FC) for short sea, not deep sea shipping due to storage iss.	No
Nuclear	No public acceptance + regulatory challenges	Monitoring
CC - onboard	Storage of CO ₂ onboard an issue	Monitoring
Fuel Cells	Especially SOFC promising due to multi fuel & high efficiency	Yes, long-term

not only change of fuel

Potentiel technologies & drop-in fuel options

Technology	Learnings sofar	Doable?
Battery	Viable for short-sea shipping, but not deep sea shipping	No
Hydrogen	Perhaps viable (ICE/FC) for short sea, not deep sea shipping due to storage iss.	No
Nuclear	No public acceptance + regulatory challenges	Monitoring
CC - onboard	Storage of CO ₂ onboard an issue	Monitoring
Fuel Cells	Especially SOFC promising due to multi fuel & high efficiency	Yes, long-term

not only change of fuel

	Fuel	Learnings sofar	Doable?
	Biodiesel (FAME)	Feedstock limitations, regulatory concerns	Short-term
	Ren. diesel (HVO)	Feedstock limitations, regulatory concerns	Short-term
	Pyro/HTL fuels	Promising: Cheap, 2. G feedstock, 'dirty', drop-in fuel & MeOH from gassific.	Medterm
	Jet-bottoms	Promising: 'Leftover' from SAF, high quality, price uncertain	Medterm
	Lignin-alcohols	Promising if lignin value remains low: cheap, drop-in for MeOH in ICE	Joker
	Alcohols-to-heavy oil	Promissing drop-in fuel if efficient conversion is developed ('alcohols-to-jet')	Perhaps
0	Fischer-Tropsch	Heavy end of Fischer-Tropsch might be blend-in quality	Perhaps

fuel blending + old ship

Anything that burns...

- Possible to handle most fuels on a ship

- Quality biofuels will be used for aviation etc
 - > HVO from triglycerides is limited and cannot be scaled for shipping
- We are used to utilize poor quality oil!
 - > HFO: High viscosity, impurities, aromatics, acidity, ...
- Few hard requirements for new drop-in fuels:
 - > Flash point (above 60°C)
 - Stability
 - Miscibility
 - **>** ...

Potentiel 1-molecule fuel options for decarbonising shipping

Technolog	y/fuel	Learnings sofar	Doable?
1. G ethanol		Food vs. Fuel issue.	No
2. G ethanol		Tech. has improved, but market price will remain high, depends of road-electr.	Perhaps
Bio-methanol		Relatively mature (biogas & gasification), best overall feasibility profile	Yes, medterm
E-methanol		Depends on carbon capture (DAC, point-source) and renewable power	Yes, long-term
DME	(gas)	Potential use as pilot-fuel for methanol or as single-fuel	Joker
Bio-methane	(gas)	Most likely not scalable, slip issues (production & use)	No
E-methane	(gas)	Slip issues (use), high energy-loss in production vs. e-methanol	No
E-ammonia	(gas)	Uncertainty on safety issues, cheapest e-fuel, regional regulatory differences	Perhaps

new fuel + new ship

Chicken & egg dilemma

- an obstacle to urgent action

Who will BUILD A NEW TYPE OF SHIP if there is no fuel or fuel infrastructure?

Maersk accelerates fleet decarbonisation with 8 large ocean-going vessels to operate on carbon neutral methanol

Who will produce a GREEN FUEL if there are no customers for it?

Maersk secures green e-methanol for the world's first container vessel operating on carbon neutral fuel

CO₂ is 'biomass with no energy'! -> E-fuels need much more hydrogen than bio-fuels

To produce methanol an inputs of carbon and hydrogen are needed

General formular for biomass can be written C_xH_yO_z

and can also be used to describe CO₂

The carbon source add much of the energy for the fuel in case of fossil sources, less for biomass and none for CO₂

For this reason much more green hydrogen is needed to produce e-methanol than bio-methanol

Example: 4 times more hydrogen to convert CO₂ than lignin!

Current Opinion in Environmental Sustainability

Volume 2, Issues 5-6, December 2010, Pages 394-403

The global technical potential of bio-energy in 2050 considering sustainability constraints

Helmut Haberl ¹ ⊠, Tim Beringer ², Sribas C Bhattacharya ³, Karl-Heinz Erb ¹, Monique Hoogwijk ⁴

Discussion and conclusions

Figure 2 summarizes the three components of the technical bio-energy potential in 2050 based on the values reported in Table 2, Table 3, Table 4. We find a technical global bio-energy potential in 2050 of approximately 210 (160–270) EJ/yr. Dedicated bio-energy crops contribute 81 (44–133) EJ/yr which is at the lower end of the potentials found in previous assessments (Table 1), but higher than the potentials

200 × energy consumption by Maersk = all the 'bio-energy crops' in the world in 2050!

Maersk entirely on e-fuels (50% conv. Loss) → high need for renewable power: ~ 228 TWh → More than 6 × Denmarks power consumption today or ~ 50 GW offshore wind

Senior Future Fuels Manager, A.P. Moller – Maersk Jacob.Zeuthen@maersk.com

